skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Beling, Andreas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a photonically driven on-chip millimeter wave (mmWave) source enabled by the heterogeneous integration of a high-speed InGaAs/InP photodiode and silicon nitride (Si3N4) microcavity solitons. The chip delivers mmWaves with −18dBm of electrical power at a frequency of 98 GHz with kHz-class linewidth and low phase noise and marks a significant advancement in on-chip photonic mmWave source performance. This breakthrough not only demonstrates capabilities of heterogeneous photonic integration but also offers a compact and scalable solution for future low-noise mmWave applications in communications and sensing technologies. 
    more » « less
  2. Free, publicly-accessible full text available June 1, 2026
  3. We demonstrate InGaAs/InAlGaAs/InP waveguide photodiodes on Si3N4with up to 81 GHz 3-dB bandwidth, 0.76 A/W responsivity, and -1.8 dBm and -9 dBm output RF power at 50 GHz and 100 GHz, respectively. 
    more » « less
  4. Abstract The generation of ultra-low-noise microwave and mmWave in miniaturized, chip-based platforms can transform communication, radar and sensing systems1–3. Optical frequency division that leverages optical references and optical frequency combs has emerged as a powerful technique to generate microwaves with superior spectral purity than any other approaches4–7. Here we demonstrate a miniaturized optical frequency division system that can potentially transfer the approach to a complementary metal-oxide-semiconductor-compatible integrated photonic platform. Phase stability is provided by a large mode volume, planar-waveguide-based optical reference coil cavity8,9and is divided down from optical to mmWave frequency by using soliton microcombs generated in a waveguide-coupled microresonator10–12. Besides achieving record-low phase noise for integrated photonic mmWave oscillators, these devices can be heterogeneously integrated with semiconductor lasers, amplifiers and photodiodes, holding the potential of large-volume, low-cost manufacturing for fundamental and mass-market applications13
    more » « less
  5. We demonstrate InGaAs/InP balanced photodiodes onSi3N4waveguides with record-high 3-dB bandwidth of 30 GHz, 0.72 A/W responsivity, and high common mode rejection ratio (CMRR) of 26 dB at 30 GHz. 
    more » « less
  6. We investigate the feasibility and performance of photon-number-resolved photodetection employing single-photon avalanche photodiodes (SPADs) with low dark counts. While the main idea, to splitnphotons intomdetection modes with a vanishing probability of more than one photon per mode, is not new, we investigate here a important variant of this situation where SPADs are side-coupled to the same waveguide rather than terminally coupled to a propagation tree. This prevents the nonideal SPAD quantum efficiency from contributing to photon loss. We propose a concrete SPAD segmented waveguide detector based on a vertical directional coupler design, and characterize its performance by evaluating the purities of Positive-Operator-Valued Measures (POVMs) in terms of number of SPADs, photon loss, dark counts, and electrical cross-talk. 
    more » « less